Cytochrome c causes pore formation in cardiolipin-containing membranes.
نویسندگان
چکیده
The release of cytochrome c from mitochondria is a key signaling mechanism in apoptosis. Although extramitochondrial proteins are thought to initiate this release, the exact mechanisms remain unclear. Cytochrome c (cyt c) binds to and penetrates lipid structures containing the inner mitochondrial membrane lipid cardiolipin (CL), leading to protein conformational changes and increased peroxidase activity. We describe here a direct visualization of a fluorescent cyt c crossing synthetic, CL-containing membranes in the absence of other proteins. We observed strong binding of cyt c to CL in phospholipid vesicles and bursts of cyt c leakage across the membrane. Passive fluorescent markers such as carboxyfluorescein and a 10-kDa dextran polymer crossed the membrane simultaneously with cyt c, although larger dextrans did not. The data show that these bursts result from the opening of lipid pores formed by the cyt c-CL conjugate. Pore formation and cyt c leakage were significantly reduced in the presence of ATP. We suggest a model, consistent with these findings, in which the formation of toroidal lipid pores is driven by initial cyt c-induced negative spontaneous membrane curvature and subsequent protein unfolding interactions. Our results suggest that the CL-cyt c interaction may be sufficient to allow cyt c permeation of mitochondrial membranes and that cyt c may contribute to its own escape from mitochondria during apoptosis.
منابع مشابه
Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes.
(1) The effect of cytochrome c addition on the phospholipid structure of liposomes composed of cardiolipin, phosphatidylserine, phosphatidylglycerol, phosphatidylcholine or phosphatidylethanolamine in a pure form or in mixtures was investigated by 31P-NMR and freeze-fracture techniques. (2) Cytochrome c specifically induces the hexagonal Hii phase and possibly an inverted micellar structure of...
متن کاملLytic and Non-Lytic Permeabilization of Cardiolipin-Containing Lipid Bilayers Induced by Cytochrome c
The release of cytochrome c (cyt c) from mitochondria is an important early step during cellular apoptosis, however the precise mechanism by which the outer mitochondrial membrane becomes permeable to these proteins is as yet unclear. Inspired by our previous observation of cyt c crossing the membrane barrier of giant unilamellar vesicle model systems, we investigate the interaction of cyt c wi...
متن کاملPhospholipid accumulation during the cell cycle in synchronous cultures of the yeast, Saccharomyces cerevisiae.
Phospholipid concentrations have been examined throughout successive cell cycles in synchronously growing cultures of the yeast, Saccharomyces cerevisiae. Total phospholipid phosphorus, as well as lecithin and phosphatidylethanolamine levels, exhibited stepwise increases during the cell cycle with step increments beginning just prior to new rounds of bud formation. Phosphatidylinositol and phos...
متن کاملAn essential bacterial-type cardiolipin synthase mediates cardiolipin formation in a eukaryote.
Cardiolipin is important for bacterial and mitochondrial stability and function. The final step in cardiolipin biosynthesis is catalyzed by cardiolipin synthase and differs mechanistically between prokaryotes and eukaryotes. To study the importance of cardiolipin synthesis for mitochondrial integrity, membrane protein complex formation, and cell proliferation in the human and animal pathogenic ...
متن کاملCardiolipin is associated with the terminal oxidase of an extremely halophilic archaeon.
Membranes having an a high content of cardiolipin were isolated from an extremely halophilic archaeon Halorubrum sp. Absorbance difference spectra of detergent-solubilized plasma membranes reduced by dithionite suggested the presence of b-type cytochromes. Non-denaturing gel electrophoresis revealed only one fraction having TMPD-oxidase activity in which cardiolipin was the major lipid componen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 16 شماره
صفحات -
تاریخ انتشار 2013